201 research outputs found

    Association of metabolic dysregulation with volumetric brain magnetic resonance imaging and cognitive markers of subclinical brain aging in middle-aged adults: the Framingham Offspring Study.

    Get PDF
    ObjectiveDiabetic and prediabtic states, including insulin resistance, fasting hyperglycemia, and hyperinsulinemia, are associated with metabolic dysregulation. These components have been individually linked to increased risks of cognitive decline and Alzheimer's disease. We aimed to comprehensively relate all of the components of metabolic dysregulation to cognitive function and brain magnetic resonance imaging (MRI) in middle-aged adults.Research design and methodsFramingham Offspring participants who underwent volumetric MRI and detailed cognitive testing and were free of clinical stroke and dementia during examination 7 (1998-2001) constituted our study sample (n = 2,439; 1,311 women; age 61 ± 9 years). We related diabetes, homeostasis model assessment of insulin resistance (HOMA-IR), fasting insulin, and glycohemoglobin levels to cross-sectional MRI measures of total cerebral brain volume (TCBV) and hippocampal volume and to verbal and visuospatial memory and executive function. We serially adjusted for age, sex, and education alone (model A), additionally for other vascular risk factors (model B), and finally, with the inclusion of apolipoprotein E-Δ4, plasma homocysteine, C-reactive protein, and interleukin-6 (model C).ResultsWe observed an inverse association between all indices of metabolic dysfunction and TCBV in all models (P < 0.030). The observed difference in TCBV between participants with and without diabetes was equivalent to approximately 6 years of chronologic aging. Diabetes and elevated glycohemoglobin, HOMA-IR, and fasting insulin were related to poorer executive function scores (P < 0.038), whereas only HOMA-IR and fasting insulin were inversely related to visuospatial memory (P < 0.007).ConclusionsMetabolic dysregulation, especially insulin resistance, was associated with lower brain volumes and executive function in a large, relatively healthy, middle-aged, community-based cohort

    Fish Intake and MRI Burden of Cerebrovascular Disease in Older Adults

    Get PDF
    BACKGROUND AND OBJECTIVE: Fish intake may prevent cerebrovascular disease (CVD), yet the mechanisms are unclear, especially regarding its impact on subclinical damage. Assuming that fish may have pleiotropic effect on cerebrovascular health, we investigated the association of fish intake with global CVD burden based on brain MRI markers. METHODS: This cross-sectional analysis included participants from the Three-City Dijon population-based cohort (aged >/=65 years) without dementia, stroke, or history of hospitalized cardiovascular disease, who underwent brain MRI with automated assessment of white matter hyperintensities, visual detection of covert infarcts, and grading of dilated perivascular spaces. Fish intake was assessed through a frequency questionnaire and the primary outcome measure was defined as the first component of a factor analysis of mixed data applied to MRI markers. The association of fish intake with the CVD burden indicator was studied using linear regressions. RESULTS: In total, 1,623 participants (mean age, 72.3 years; 63% women) were included. The first component of factor analysis (32.4% of explained variance) was associated with higher levels of all three MRI markers. Higher fish intake was associated with lower CVD burden. In a model adjusted for total intracranial volume, compared to participants consuming fish /=4 times per week had a beta = -0.19 (95% CI, -0.37; -0.01) and beta = -0.30 (-0.57; -0.03) lower indicator of CVD burden, respectively (P trend /=75 years. For comparison, in the younger age group, consuming fish 2-3 times a week was roughly equivalent (in opposite direction) to the effect of hypertension. DISCUSSION: In this large population-based study, higher frequency of fish intake was associated with lower CVD burden, especially among participants younger than 75 years, suggesting a beneficial effect on brain vascular health before manifestation of overt brain disease. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that in individuals without stroke or dementia, higher fish intake is associated with lower subclinical CVD at MRI

    Hum Brain Mapp

    Get PDF
    White matter hyperintensities (WMHs) are well-established markers of cerebral small vessel disease, and are associated with an increased risk of stroke, dementia, and mortality. Although their prevalence increases with age, small and punctate WMHs have been reported with surprisingly high frequency even in young, neurologically asymptomatic adults. However, most automated methods to segment WMH published to date are not optimized for detecting small and sparse WMH. Here we present the SHIVA-WMH tool, a deep-learning (DL)-based automatic WMH segmentation tool that has been trained with manual segmentations of WMH in a wide range of WMH severity. We show that it is able to detect WMH with high efficiency in subjects with only small punctate WMH as well as in subjects with large WMHs (i.e., with confluency) in evaluation datasets from three distinct databases: magnetic resonance imaging-Share consisting of young university students, MICCAI 2017 WMH challenge dataset consisting of older patients from memory clinics, and UK Biobank with community-dwelling middle-aged and older adults. Across these three cohorts with a wide-ranging WMH load, our tool achieved voxel-level and individual lesion cluster-level Dice scores of 0.66 and 0.71, respectively, which were higher than for three reference tools tested: the lesion prediction algorithm implemented in the lesion segmentation toolbox (LPA: Schmidt), PGS tool, a DL-based algorithm and the current winner of the MICCAI 2017 WMH challenge (Park et al.), and HyperMapper tool (Mojiri Forooshani et al.), another DL-based method with high reported performance in subjects with mild WMH burden. Our tool is publicly and openly available to the research community to facilitate investigations of WMH across a wide range of severity in other cohorts, and to contribute to our understanding of the emergence and progression of WMH.Etude de cohorte sur la santé des étudiantsStopping cognitive decline and dementia by fighting covert cerebral small vessel diseaseLaboratoire pour les applications en imagerie biomédicaleTranslational Research and Advanced Imaging LaboratoryInitiative d'excellence de l'Université de Bordeau

    Vascular contributions to cognitive impairment and dementia: Research consortia that focus on etiology and treatable targets to lessen the burden of dementia worldwide

    Get PDF
    The research into vascular contributions to cognitive impairment and dementia (VCID) aims to understand the importance of cerebrovascular biology in cognitive decline. Prevention and treatment of VCID is poised to have major impact on dementia-related disease burden and is thus a critical emerging objective in dementia research. This article presents VCID consortia focused on multidisciplinary approaches to identify key pathologic targets and develop diagnostic tools with the goal of bridging the divide between basic research and clinical trials. Members of these multi-institute, multidisciplinary consortia provide a prospective on the history and emerging science of VCID and how VCID consortia can address some of the more complex questions in VCID and drive the field forward. These consortia, and others like them, are uniquely suited to tackle some of the most difficult obstacles in translating research to the clinic

    Migraine, Stroke, and Cervical Arterial Dissection Shared Genetics for a Triad of Brain Disorders With Vascular Involvement

    Get PDF
    Background and Objectives Migraine, stroke, and cervical artery dissection (CeAD) represent a triad of cerebrovascular disorders with pairwise comorbid relationships and vascular involvement. Larger samples and recent advances in methodology invite systematic exploration of their shared genetics. Methods Genetic analyses leveraged summary statistics from genome-wide association studies of the largest available samples of each disorder, including subtypes of stroke (ischemic stroke, large artery stroke, small vessel stroke, and cardioembolic stroke) and migraine (with aura and without aura). For each pair of disorders, genetic correlation was assessed both on a genome-wide basis and within independent segments across the genome including known specific loci for each disorder. A cross-trait meta-analysis was used to identify novel candidate loci. Finally, potential causality of migraine susceptibility on stroke and CeAD was assessed by Mendelian randomization. Results Among all pairs of disorders, genome-wide genetic correlation was observed only between CeAD and migraine, particularly MO. Local genetic correlations were more extensive between migraine and CeAD than those between migraine and stroke or CeAD and stroke and revealed evidence for novel CeAD associations at rs6693567 (ADAMTSL4/ECM1), rs11187838 (PLCE1), and rs7940646 (MRVI1) while strengthening prior subthreshold evidence at rs9486725 (FHLS) and rs650724 (LRP1). At known migraine loci, novel associations with stroke had concordant risk alleles for small vessel stroke at rs191602009 (CARP) and for cardioembolic stroke at rs55884259 (NKX2-5). Known migraine loci also revealed novel associations but with opposite risk alleles for all stroke, ischemic stroke, and small vessel stroke at rs55928386 (HTRA1), for large artery stroke at rs11172113 (LRP1), and for all stroke and ischemic stroke at rs1535791 and rs4942561 (both LRCH1), respectively. rs182923402 (near PTCH1) was a novel concordant locus for migraine and cardioembolic stroke. Mendelian randomization supported potential causal influences of migraine on CeAD (odds ratio [95% confidence interval] per doubling migraine prevalence = 1.69 [1.24-2.3], p = 0.0009) with concordant risk, but with opposite risk on large artery stroke (0.86 [0.76-0.96], p = 0.0067). Discussion The findings emphasize shared genetic risk between migraine and CeAD while identifying loci with likely vascular function in migraine and shared but opposite genetic risk between migraine and stroke subtypes, and a central role of LRP1 in all 3 cerebrovascular disorders.Peer reviewe

    Development and validation of a priori risk model for extensive white matter lesions in people age 65 years or older: The Dijon MRI study

    Get PDF
    Objectives The objective was to develop and validate a risk model for the likelihood of extensive white matter lesions (extWML) to inform clinicians on whether to proceed with or forgo diagnostic MRI. Design Population-based cohort study and multivariable prediction model. Setting Two representative samples from France. Participants Persons aged 60-80 years without dementia or stroke. Derivation sample n=1714; validation sample n=789. Primary and secondary outcome measures Volume of extWML (log cm3) was obtained from T2-weighted images in a 1.5 T scanner. 20 candidate risk factors for extWML were evaluated with the C-statistic. Secondary outcomes in validation included incident stroke over 12 years follow-up. Results The multivariable prediction model included six clinical risk factors (C-statistic=0.61). A cut-off of 7 points on the multivariable prediction model yielded the optimum balance in sensitivity 63.7% and specificity 54.0% and the negative predictive value was high (81.8%), but the positive predictive value was low (31.5%). In further validation, incident stroke risk was associated with continuous scores on the multivariable prediction model (HR 1.02; 95% CI 1.01 to 1.04, P=0.02) and dichotomised scores from the multivariable prediction model (HR 1.28; 95% CI 1.02 to 1.60, P=0.03). Conclusions A simple clinical risk equation for WML constituted by six variables can inform decisions whether to proceed with or forgo brain MRI. The high-negative predictive value demonstrates potential to reduce unnecessary MRI in the population aged 60-80 years

    Risk of first ischaemic stroke and use of antidopaminergic antiemetics: nationwide case-time-control study

    Get PDF
    OBJECTIVE: To estimate the risk of ischaemic stroke associated with antidopaminergic antiemetic (ADA) use. DESIGN: Case-time-control study. SETTING: Data from the nationwide French reimbursement healthcare system database SystĂšme National des DonnĂ©es de SantĂ© (SNDS). PARTICIPANTS: Eligible participants were ≄18 years with a first ischaemic stroke between 2012 and 2016 and at least one reimbursement for any ADA in the 70 days before stroke. Frequencies of ADA reimbursements were compared for a risk period (days -14 to -1 before stroke) and three matched reference periods (days -70 to -57, -56 to -43, and -42 to -29) for each patient. Time trend of ADA use was controlled by using a control group of 21 859 randomly selected people free of the event who were individually matched to patients with stroke according to age, sex, and risk factors of ischaemic stroke. MAIN OUTCOME MEASURES: Association between ADA use and risk of ischaemic stroke was assessed by estimating the ratio of the odds ratios of exposure evaluated in patients with stroke and in controls. Analyses were adjusted for time varying confounders (anticoagulants, antiplatelets, and prothrombotic or vasoconstrictive drugs). RESULTS: Among the 2612 patients identified with incident stroke, 1250 received an ADA in the risk period and 1060 in the reference periods. The comparison with the 5128 and 13 165 controls who received an ADA in the same periods yielded a ratio of adjusted odds ratios of 3.12 (95% confidence interval 2.85 to 3.42). Analyses stratified by age, sex, and history of dementia showed similar results. Ratio of adjusted odds ratios for analyses stratified by ADA was 2.51 (2.18 to 2.88) for domperidone, 3.62 (3.11 to 4.23) for metopimazine, and 3.53 (2.62 to 4.76) for metoclopramide. Sensitivity analyses suggested the risk would be higher in the first days of use. CONCLUSIONS: Using French nationwide exhaustive reimbursement data, this self-controlled study reported an increased risk of ischaemic stroke with recent ADA use. The highest increase was found for metopimazine and metoclopramide

    Stroke

    Get PDF
    Previous observational studies reported that a lower serum 25-hydroxyvitamin D [25(OH)D] concentration is associated with a higher burden of cerebral small vessel disease (cSVD). The causality of this association is uncertain, but it would be clinically important, given that 25(OH)D can be a target for intervention. We tried to examine the causal effect of 25(OH)D concentration on cSVD-related phenotypes using a Mendelian randomization approach. Genetic instruments for each serum 25(OH)D concentration and cSVD-related phenotypes (lacunar stroke, white matter hyperintensity, cerebral microbleeds, and perivascular spaces) were derived from large-scale genome-wide association studies. We performed 2-sample Mendelian randomization analyses with multiple post hoc sensitivity analyses. A bidirectional Mendelian randomization approach was also used to explore the possibility of reverse causation. We failed to find any significant causal effect of 25(OH)D concentration on cSVD-related phenotypes (odds ratio [95% CI], 1.00 [0.87-1.16], 1.01 [0.96-1.07], 1.06 [0.85-1.33], 1.00 [0.97-1.03], 1.02 [0.99-1.04], 1.01 [0.99-1.04] for lacunar stroke, white matter hyperintensity, cerebral microbleeds, and white matter, basal ganglia, hippocampal perivascular spaces, respectively). These results were reproduced in the sensitivity analyses accounting for genetic pleiotropy. Conversely, when we examined the effects of cSVD phenotypes on 25(OH)D concentration, cerebral microbleeds were negatively associated with 25(OH)D concentration (0.94 [0.92-0.96]). Given the adequate statistical power (>0.8) of the analyses, our findings suggest that the previously reported association between 25(OH)D concentration and cSVD phenotypes might not be causal and partly attributed to reverse causation

    Genome-Wide Meta-analysis identifies three novel loci associated with stroke

    Get PDF
    We conducted a European‐only and transancestral genome‐wide association meta‐analysis in 72,147 stroke patients and 823,869 controls using data from UK Biobank (UKB) and the MEGASTROKE consortium. We identified an exonic polymorphism in NOS3 (rs1799983, p.Glu298Asp; p = 2.2E‐8, odds ratio [OR] = 1.05, 95% confidence interval [CI] = 1.04–1.07) and variants in an intron of COL4A1 (rs9521634; p = 3.8E‐8, OR = 1.04, 95% CI = 1.03–1.06) and near DYRK1A (rs720470; p = 6.1E‐9, OR = 1.05, 95% CI = 1.03–1.07) at genome‐wide significance for stroke. Effect sizes of known stroke loci were highly correlated between UKB and MEGASTROKE. Using Mendelian randomization, we further show that genetic variation in the nitric oxide synthase–nitric oxide pathway in part affects stroke risk via variation in blood pressure
    • 

    corecore